Trenutno se bolesnici s hiperkinetičkim poremećajima kretanja klasificiraju na temelju stručnog mišljenja. U nekim se slučajevima koristi elektromiografija (EMG). Razvrstavanje se stoga uglavnom temelji na kliničkoj procjeni. Procjena vrste hiperkinetičkog poremećaja kretanja je složena jer postoje male nijanse između bolesti i pacijenata mogu imati višestruke poremećaje. Osim toga, čovjek čini svoje promatranje iz holite način i stoga uvijek gleda na koherentnost onoga što se promatra. Za pravilnu klasifikaciju i dijagnozu poremećaja hiperkinetičkog pokreta neophodno je objektivno promatranje (dijelova) tijela. To se odnosi na učestalost gibanja, na primjer, nadlaktice, kutove pod kojima se to događa i (ne)slučajno. Rezultat svega toga je da ispravna klasifikacija i dijagnoza poremećaja kretanja trenutno ima Kappa vrijednost, mjeru koja se koristi za odražavanje sporazuma između stručnjaka, od prosječno 0,5 do 0,6. To znači da su šanse relativno visoke da se napravi pogrešna dijagnoza, započne se pogrešno liječenje i stoga učinkovitost nizozemske skrbi nije optimalna. ZiuZ i UMCG žele u okviru ovog projekta istražiti kako umjetna inteligencija može doprinijeti poboljšanju klasifikacije i dijagnoze s ciljem njezina povećanja na najmanje 0,8, a time i smanjenja broja „pogrešnih” liječenja. Cilj ovog projekta je stoga razviti prvi dokaz principa računalno potpomognutog dijagnostičkog alata (CAD alat) koji ima za cilj poboljšati dijagnozu, liječenje i procjenu prirodnog tijeka poremećaja hiperkinetičkog pokreta i koristiti više izvora podataka (video/senzori/medicinske informacije). Rezultati projekta tada bi se mogli primijeniti i na npr. Parkinsonovo istraživanje koje ima sučelja s podrhtavanjem.