Kohesio: discover EU projects in your region

project info
Start date: 1 September 2014
End date: 31 August 2017
funding
Fund: European Regional Development Fund (ERDF)
Total budget: 1 070 000,00 €
EU contribution: 392 000,00 € (36,64%)
programme
Programming period: 2014-2021
Managing authority: työ- ja elinkeinoministeriö, yritys- ja alueosaston rakennerahastot ja koheesiopolitiikka -ryhmä

From Mining to International T&K Environment

The project will build the first test device for the main level of the Pyhäsalmi mine, approximately 1400 metres. This is a small liquid scintillation test to measure the proportion of the isotope C14 in several samples of liquid scintillation agents. The experiment requires very low external background radiation to succeed. The liquid scintillation agent must also be very clean. The test apparatus consists of a small cylindrical liquid scintillation container. On both sides there are photoconductors and low-activity light amplifier tubes. These are surrounded by a thick layer of copper and lead, approximately 30-50 cm, and about 20 cm with a layer of paraffin. In addition, nitrogen rinsing is required to remove radon background. Other means may also be needed.Preferential substance samples and some of the test equipment are obtained from the Russian Academy of Sciences, which is also involved in the conduct of the experiment. In addition, the University of Jyväskylä takes part in the test. The aim is to find a sample of liquid scintillation in which the ratio of the isotope C14 to C12 is as small as possible and significantly lower than the current record ratio. The current record is about 2x10^(-18).The project is related to the development of detection equipment for detecting solar pp neutrins. Although their flux is by far the largest of all solar neutrinos, their energy is very low, and the activity of the C14 isotope in liquid scintillation currently prevents the detection of pp-neutrines. The project will not be able to detect neutrinos, but the liquid scintillation material developed could be used to build larger-sized detectors (either for Pyhäsalmi or elsewhere). The results of the project are important for the scientific community. Detection of solar pp-neutrins would be important, as the pp chain produces approximately 98 % of the solar energy and is a direct tool for exploring the interiors of the sun.The project also develops a small (approximately 500 litres) new type of liquid scintillation detector to study the half-lifes of double beta-driving isotopes based on C14 measurements. This requires work on detector development, for example, on background radiation and the detection of scintillation light. In addition, the dissolution of different isotopes in liquid scintillation must be studied in such a way that the optical properties are not altered. The tests carried out with project funding are the first tests with low background radiation in the Pyhäsalmi mine and must therefore be carried out as deep as possible. In addition to the scientific objectives of the experiment, they play an important role in getting other test equipment to the Pyhäsalmi mine. These tests will also serve as reference tests and will allow, for example, a so-called Open Call search, which will also be carried out during the project. It enquires about the interest of international astro-particle physics collaborations to transfer their current experiment or to build a new experiment at the Pyhäsalmi mine. The project also takes part in the technical development and research of the Lar-Demo equipment to be built in Cern and the Lar-Pilot equipment designed for Pyhäsalmi. The aim is to participate in development and research in Cern and thus to strengthen local know-how in the field of Lar technology. In addition, the testing of Lar detectors and its peripherals and the construction of prototype equipment will be carried out at the Pyhäsalmi mine.

Flag of Finland  Pohjois-Pohjanmaa, Finland