Protein function is often regulated by meta-translation modifications such as methylation, fosphorylation, acetylation and ubiquitinisation, which are added to the lateral chain of amino acids. Changes in the levels of these modifications can dramatically alter the activity of targeted proteins. Arginine methylation is such a protein modification catalysed by the enzyme family known as PRMTs (protein arginine methyltransferases). PRMTs are diffuse in eukaryotic cells and arginine methylation is found in both cytoplasmic and nuclear proteins. Thus, it is not surprising that PRMTs and arginine methylation are involved in the pathogenesis of various human diseases including cancer. Despite great advances in understanding the biological roles of arginine methylation and cellular functions of PRMTs, knowledge about the regulation of this protein modification and its catalysing enzymes remains very limited. In addition, enzymes that can remove this modification from arginines have not yet been discovered. Therefore, the main objective of this study is to identify factors that regulate the methylation levels of arginine with the potential to discover the much-discussed arginine demethylase. To achieve this goal, we will use a modern functional genomic approach to S. cerevisiae saccharomyce. Overall, this study will create new fundamental scientific knowledge on the regulation of translating modifications and will reveal new protein functions that will open new horizons to the study and understanding of human diseases.