În prezent, pacienții cu tulburări de mișcare hiperkinetică sunt clasificați pe baza opiniilor experților. Electromiografia (EMG) este utilizată în unele cazuri. Prin urmare, clasificarea se bazează în principal pe evaluarea clinică. Evaluarea tipului de tulburare de mișcare hiperkinetică este complexă, deoarece există nuanțe mici între boli și pacienți pot avea tulburări multiple. În plus, omul își face observația dintr-o manieră holită și, prin urmare, se uită întotdeauna la coerența a ceea ce se observă. Pentru o clasificare adecvată și diagnosticarea tulburărilor de mișcare hiperkinetică, este esențială o observare obiectivă a (părților) corpului. Aceasta se referă la frecvența mișcărilor, de exemplu, ale brațului superior, ale unghiurilor sub care se produce acest lucru și (în)aleatorii. Rezultatul tuturor acestora este că clasificarea și diagnosticarea corectă a tulburărilor de mișcare au în prezent o valoare Kappa, o măsură utilizată pentru a reflecta acordul dintre specialiști, de la o medie de 0,5 la 0,6. Aceasta înseamnă că șansele sunt relativ mari ca un diagnostic greșit să fie făcut, să înceapă un tratament greșit și, prin urmare, eficacitatea îngrijirii olandeze nu este optimă. ZiuZ și UMCG doresc să cerceteze în acest proiect modul în care inteligența artificială poate contribui la îmbunătățirea clasificării și diagnosticării, cu scopul de a o crește la cel puțin 0,8 și, astfel, de a reduce numărul de tratamente „greșite”. Scopul acestui proiect este, prin urmare, de a dezvolta o primă dovadă de principiu a unui instrument de diagnosticare asistată de calculator (instrument CAD) care vizează îmbunătățirea diagnosticului, tratamentului și evaluării cursului natural al tulburărilor de mișcare hiperkinetică și utilizarea mai multor surse de date (video/senzori/informații medicale). Rezultatele proiectului ar putea fi apoi aplicate, de exemplu, cercetării Parkinson, care are interfețe cu tremor.