Attualmente, i pazienti con disturbi del movimento ipercinetico sono classificati sulla base del parere di esperti. L'elettromiografia (EMG) è usata in alcuni casi. La classificazione si basa quindi principalmente sulla valutazione clinica. Valutare il tipo di disturbo del movimento ipercinetico è complesso perché ci sono piccole sfumature tra le malattie e i pazienti possono avere disturbi multipli. Inoltre, l'uomo fa la sua osservazione da un modo olite e quindi guarda sempre alla coerenza di ciò che viene osservato. Per una corretta classificazione e diagnosi di disturbi ipercinetici del movimento, è essenziale un'osservazione oggettiva di (parti del) corpo. Ciò riguarda la frequenza dei movimenti, ad esempio, della parte superiore del braccio, degli angoli sotto i quali si verifica e (in)casuale. Il risultato di tutto questo è che la corretta classificazione e diagnosi dei disturbi del movimento attualmente ha un valore Kappa, una misura utilizzata per riflettere l'accordo tra gli specialisti, da una media di 0,5 a 0,6. ZiuZ e UMCG vogliono ricercare in questo progetto come l'intelligenza artificiale possa contribuire a migliorare la classificazione e la diagnosi con l'obiettivo di aumentarla ad almeno 0,8, riducendo così il numero di trattamenti "sbagliati". L'obiettivo di questo progetto è quindi quello di sviluppare una prima prova di principio di uno strumento diagnostico computerizzato (strumento CAD) che mira a migliorare la diagnosi, il trattamento e la valutazione del decorso naturale dei disturbi del movimento ipercinetico e utilizzando più fonti di dati (video/sensori/informazioni mediche). I risultati del progetto potrebbero quindi essere applicati anche alla ricerca di Parkinson, che ha interfacce con tremori.