Actuellement, les patients présentant des troubles des mouvements hypercinétiques sont classés sur la base d’un avis d’experts. L’électromyographie (EMG) est utilisée dans certains cas. La classification repose donc principalement sur une évaluation clinique. L’évaluation du type de trouble du mouvement hypercinétique est complexe parce qu’il y a de petites nuances entre les maladies et les patients peuvent avoir plusieurs troubles. En outre, l’homme fait son observation d’une manière holite et regarde donc toujours la cohérence de ce qui est observé. Pour une classification et un diagnostic appropriés des troubles des mouvements hypercinétiques, une observation objective de (parties) du corps est essentielle. Cela concerne la fréquence des mouvements, par exemple, du bras supérieur, les angles sous lesquels cela se produit et (in)random. Le résultat de tout cela est que la classification correcte et le diagnostic des troubles des mouvements a actuellement une valeur Kappa, une mesure utilisée pour refléter l’accord entre les spécialistes, d’une moyenne de 0,5 à 0,6. ZiuZ et UMCG veulent étudier dans ce projet comment l’intelligence artificielle peut contribuer à améliorer la classification et le diagnostic dans le but de l’augmenter à au moins 0,8 et donc de réduire le nombre de traitements «mauvais». L’objectif de ce projet est donc de développer une première preuve de principe d’un outil de diagnostic assisté par ordinateur (outil CAD) qui vise à améliorer le diagnostic, le traitement et l’évaluation de l’évolution naturelle des troubles du mouvement hyperkinétique et en utilisant de multiples sources de données (vidéo/capteurs/informations médicales). Les résultats du projet pourraient alors également être appliqués à la recherche de Parkinson, qui a des interfaces avec les tremblements.