Kohesio: découvrez les projets de l’UE dans votre région

Informations sur le projet
Date de début: 19 avril 2018
Date de fin: 31 décembre 2020
financement
Fonds: Fonds européen de développement régional (ERDF)
Budget total: 671 584,95 €
Contribution de l’UE: 503 688,71 € (75%)
programme
Période de programmation: 2014-2021
Autorité de gestion: Nemzetgazdasági Minisztérium

Développement de l’infrastructure cristallographique à rayons X ELTE pour étudier et affiner la structure et les interactions des biomachromolécules et des molécules biologiquement actives

A) OBJECTIF No 2 — L’objectif du projet est de promouvoir la chimie structurelle nationale et la recherche biologique structurelle, de soutenir le lancement de nouvelles activités de recherche fondamentale et d’innovation de pointe en élargissant l’infrastructure existante de diffraction des rayons X. L’infrastructure actuelle se compose de laboratoires de cristallisation équipés, d’un robot cristallisant et d’un diffractomètre périmé adapté aux tests de structure protéique. Le développement prévu, l’acquisition d’un diffractomètre avec annode rotatif et détecteur de pixels hybrides de pointe, permettrait d’étendre la gamme d’applications à l’aide d’un nouvel appareil de sensibilité unique en Hongrie. L’importance des recherches sur la diffraction des rayons X — Le réseau d’interaction bien réglementé des molécules joue un rôle inévitable dans le fonctionnement de l’organisme vivant, y compris les interactions et les complexes permanents ou transitoires des protéines entre eux et avec d’autres molécules. La représentation tridimensionnelle joue un rôle majeur dans la compréhension de ces processus. Diffraction aux rayons X — où le succès de la mesure, le contenu informationnel des données mesurées dépend à la fois de la qualité du cristal testé et de l’état de la technique de l’appareil de diffraction, est l’un des principaux outils pour l’examen spatial des molécules, des complexes moléculaires et des interactions dans les détails atomiques. Les points focaux de la RECHERCHE — Le projet rassemble des recherches interdisciplinaires, axées sur les interactions intermoléculaires, la caractérisation atomique et la conception de modèles d’interaction spatiale dans les complexes protéiques et les cristaux de petites molécules. L’un des principaux objectifs de notre recherche est de mieux comprendre la fonction protéique et les réseaux de protéines prêtables, de cartographier les propriétés structurales-interactions altérées des variantes protéiques et les changements de protéines associés aux maladies, afin d’aider à concevoir des ligands et des protéines (motifs peptides fiables). 1) Modification chimique des protéines liées aux maladies (par exemple, l’oxydation est la protéine DJ-1 qui assure la fonction de protection contre la maladie de Parkinson; mutations ponctuelles dans le cas d’une enzyme responsable de la production de pseudouridine impliquée dans le réglage fin de la structure de l’ARN) et compréhension des changements structurels et d’interaction qui en résultent, afin de clarifier les éléments structurels de la fonction. En outre, notre objectif est de fournir une aide efficace dans la conception de ligands spécifiques (en combinaison avec des méthodes hautement perméables) et dans l’utilisation de ligands avancés comme substances actives candidates ou capteurs moléculaires (par exemple DJ-1 et D-aminoacide oxydase). Le diffractomètre à obtenir collecte également régulièrement des données de mesure de haute qualité à partir de cristaux moins dispersants, ce qui accélère le processus de conception. 2) Par l’inhibition spécifique de l’activation anormale du système immunitaire, des molécules inhibitrices pouvant être utilisées en médecine ou dans un examen plus détaillé des voies d’activation (par exemple, système de complément) peuvent être développées. Avec l’infrastructure de diffraction des rayons X, nous voulons comprendre la spécificité et la sélectivité de ces nouvelles molécules d’inhibiteurs de protéines développées avec l’évolution directionnelle. 3) Entre les modèles d’interaction protéine-protéine, les interactions des protéines de noeuds sont également significatives d’un point de vue médical, qui se caractérisent par la reconnaissance de divers motifs prêtables, affectant ainsi de manière significative les processus physiologiques en influençant le fonctionnement de plusieurs partenaires protéiques (p. ex. protéines S100 impliquées dans les métastases, ou kinases MAP, tyrosine kinases qui contrôlent la division cellulaire et les processus de mouvement impliqués dans les processus de transmission des signaux). Dans le cas des protéines auto-organisées, génératrices de multimères qui séparent la réaction chimique qu’elles catalysent du monde extérieur par un système de cavité, donc des cibles potentielles pour les applications biotechnologiques, notre objectif est d’identifier et de caractériser les détails structurels importants pour l’auto-organisation des protéines (oligopeptidases). 5) En définissant la structure des petites molécules, l’un de nos objectifs est la détermination de haute précision des molécules, à partir de laquelle nous pouvons déduire le changement de réactivité à l’intérieur d’une série de composés dans le cas de composés biologiquement actifs (par exemple dérivés de ferrocène, composés à action cytostatique). 6) La reconnaissance sélective et kiral des partenaires prêtables est essentielle au fonctionnement des systèmes biologiques. Dans la production de moléc...

Flag of Hongrie  Hongrie