Web oficial de la Unión EuropeaWeb oficial de la UE

Kohesio: descubra los proyectos de la UE en su región

información sobre el proyecto
Fecha de comienzo: 1 enero 2018
Fecha de finalización: 20 febrero 2022
financiación
Fondo: Fondo Europeo de Desarrollo Regional (ERDF)
Presupuesto total: 2 370 129,00 €
Contribución de la UE: 2 370 129,00 € (100%)
programa
Período de programación: 2014-2021
Autoridad de gestión: Samenwerkingsverband Noord-Nederland

NEMO: el próximo movimiento en los trastornos del movimiento

Actualmente, los pacientes con trastornos del movimiento hipercinético se clasifican sobre la base de la opinión de los expertos. La electromiografía (EMG) se utiliza en algunos casos. Por lo tanto, la clasificación se basa principalmente en la evaluación clínica. Evaluar el tipo de trastorno del movimiento hipercinético es complejo porque hay pequeños matices entre las enfermedades y los pacientes pueden tener trastornos múltiples. Además, el hombre hace su observación de una manera holita y, por lo tanto, siempre mira la coherencia de lo que se está observando. Para una correcta clasificación y diagnóstico de trastornos del movimiento hipercinético, es esencial una observación objetiva de (partes de) el cuerpo. Esto se refiere a la frecuencia de los movimientos de, por ejemplo, la parte superior del brazo, los ángulos bajo los cuales esto ocurre y (in)random. El resultado de todo esto es que la correcta clasificación y diagnóstico de los trastornos del movimiento tiene actualmente un valor Kappa, una medida utilizada para reflejar el acuerdo entre los especialistas, de un promedio de 0,5 a 0,6. ZiuZ y UMCG quieren investigar en este proyecto cómo la inteligencia artificial puede contribuir a mejorar la clasificación y el diagnóstico con el objetivo de aumentarla a al menos 0,8 y así reducir el número de tratamientos «incorrectos». El objetivo de este proyecto es, por lo tanto, desarrollar una primera prueba de principio de una herramienta de diagnóstico asistido por ordenador (herramienta CAD) que tenga como objetivo mejorar el diagnóstico, el tratamiento y la evaluación del curso natural de trastornos del movimiento hipercinético y utilizando múltiples fuentes de datos (vídeo/sensores/información médica). Los resultados del proyecto también podrían aplicarse a, por ejemplo, la investigación de Parkinson, que tiene interfaces con temblores.

Flag of Países Bajos  Países Bajos