MED-P pretende mejorar el diagnóstico, tratamiento e investigación en enfermedades crónicas, oncológicas, degenerativas y raras, y en primer contacto con el sistema, sea por urgencias o gestión de flujos; mediante medicina personalizada con nuevas herramientas de BigData. _x000D_ Se dotará a los Servicios Sanitarios de instrumentos que les permitan tomar decisiones de salud adaptadas a las características y necesidades individuales de cada paciente. Para ello, consideraremos variables clínicas, patológicas, imagen, pronosticas y predictivas; así como otras no clínicas y disponibles fuera del sistema sanitario (estilo de vida, adherencia al tratamiento, etc.)_x000D_ La/s solución/es integrará datos de diversas fuentes, y facilitará su análisis y explotación, permitiendo determinar patrones de evolución de la enfermedad, respuesta terapéutica, etc. Debe ir enfocada hacia el manejo de estas enfermedades con criterios de oportunidad, efectividad, eficiencia, factibilidad y sostenibilidad de la asistencia sanitaria._x000D_ Para llegar al resultado final de generación de conocimiento útil en ese episodio, para el facultativo (SSDC) o la máquina con interfaz de paciente (asistente virtual al paciente para diagnóstico, tratamiento sencillo, ampliación de informes y promoción salud personalizada en proyecto independiente); se contará con:_x000D_ Gestión y Tratamiento de grandes volúmenes de Datos._x000D_ Analíticas (textmining, datamining, modelos estadísticos, predictivos y descriptivos)._x000D_ Open Data._x000D_ Evaluación de calidad clínica de D._x000D_ Motores de búsqueda._x000D_ Interoperabilidad y seguridad de servicios big data en salud y repositorios de investigación._x000D_ Aprendizaje automático "Machine Learning" y de modelos predictivos._x000D_ Pronósticos mediante similitud de rutas clínicas._x000D_ Evidencia médica agregada mediante teoría de la decisión._x000D_ Despliegue del modelado multiescala y multinivel del paciente._x000D_ Estratificación multicriterio de pacientes._x000D_ Evaluación temprana y cuantitativa del tratamiento._x000D_ Interrogación a repositorios mediante abstracciones.